Cluster automorphisms and compatibility of cluster variables
نویسندگان
چکیده
In this paper, we introduce a notion of unistructural cluster algebras, for which the set of cluster variables uniquely determines the clusters. We prove that cluster algebras of Dynkin type and cluster algebras of rank 2 are unistructural, then prove that if A is unistructural or of Euclidean type, then f : A → A is a cluster automorphism if and only if f is an automorphism of the ambient field which restricts to a permutation of the cluster variables. In order to prove this result, we also investigate the Fomin-Zelevinsky conjecture that two cluster variables are compatible if and only if one does not appear in the denominator of the Laurent expansions of the other.
منابع مشابه
Cluster Automorphisms and the Marked Exchange Graphs of Skew-Symmetrizable Cluster Algebras
Cluster automorphisms have been shown to have links to the mapping class groups of surfaces, maximal green sequences and to exchange graph automorphisms for skew-symmetric cluster algebras. In this paper we generalise these results to the skew-symmetrizable case by introducing a marking on the exchange graph. Many skew-symmetrizable matrices unfold to skew-symmetric matrices and we consider how...
متن کامل1 5 N ov 2 00 5 Applications of BGP - reflection functors : isomorphisms of cluster algebras ∗
Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1, · · · , un) of rational functions of n independent indeterminates u1, · · · , un. It is an isomorphism between two cluster algebras associated to the matrix A (see section 4 for precise meaning). When A is of finite type, these isomorphisms behave nicely, they...
متن کاملDenominator Vectors and Compatibility Degrees in Cluster Algebras of Finite Type
We present two simple descriptions of the denominator vectors of the cluster variables of a cluster algebra of finite type, with respect to any initial cluster seed: one in terms of the compatibility degrees between almost positive roots defined by S. Fomin and A. Zelevinsky, and the other in terms of the root function of a certain subword complex. These descriptions only rely on linear algebra...
متن کاملar X iv : m at h / 05 11 38 4 v 2 [ m at h . R T ] 1 9 Ju n 20 06 Applications of BGP - reflection functors : isomorphisms of cluster algebras ∗
Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1, · · · , un) of rational functions of n independent indeterminates u1, · · · , un. It is an isomorphism between two cluster algebras associated to the matrix A (see section 4 for precise meaning). When A is of finite type, these isomorphisms behave nicely, they...
متن کاملCLUSTER ALGEBRAS AND CLUSTER CATEGORIES
These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...
متن کامل